
Object Oriented Programming
for Scientists

Tom Clune
SIVO Fortran 2003 Series

April 22, 2008

4/22/08 OOP for Scientists 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.

4/22/08 OOP for Scientists 3

Outline
 Weaknesses of structured programming
 Detailed motivating example
 Basic concepts of OOP
 Applying OOP to motivating example
 Extents of applicability

4/22/08 OOP for Scientists 4

Caveats
 OOP is a major paradigm shift which generally takes

years to fully absorb.
 This talk is meant to motivate the rationale for using

OOP in some circumstances within scientific models.
 This talk is not meant as a substitute for actual

training/experience.
 Lots of excellent sources on the web.
 Most examples are motivated by computer science

considerations and may therefore be unconvincing for typical
physical scientists.

4/22/08 OOP for Scientists 5

(Narrow) History of OOP
 OOP grew out of perceived weaknesses/difficulties of structured

programming:
 Structured programs consisted of (global) data structures and disjoint

procedures for accessing/modifying the data structures.
 Difficulties arise especially for large systems composed in this manner.

 Weakness 1: Lack of support for encapsulation
 Modifications are difficult/expensive

 Explicit references to data structure components forces frequent and
pervasive changes on implementation as the data structure evolves over
time.

 Example: “Y2K” bug. Representation was explicit throughout the code.
 Developers need to be expert in all parts of the application.
 Limited modularity

 DRY principle: Don’t Repeat Yourself

4/22/08 OOP for Scientists 6

History (cont’d)
 Weakness 2: Lack of support for extension/inheritance

 Isolated use cases that require different logic cannot be directly
supported. Workarounds are tedious at best and tend to bloat logic
and data structures.

 Weakness 2b: Centralized development constraint
 If an external developer creates a useful extension, she must push

the extension back to the original developers in order to be of use to
other users.

 Common problem for developers of infrastructure layers.
 E.g. if I create a new type of grid for ESMF, I cannot share the

extension with other users in any simple manner. Instead, ESMF
core development would need to incorporate the extension in later
releases.

4/22/08 OOP for Scientists 7

History of OOP (cont’d)
 Weakness 3: Lack of support for polymorphism

 Sometimes referred to as dynamic dispatch
 Common scenarios involve multiple implementations of the same

functionality. Support for variations leads to pervasive nested
conditionals which increase complexity and errors.

 Examples:
 Support for multiple coordinate systems or grids
 Support for multiple nonlinear solvers

 Weakness 4: Lack of support for templates
 Developers often encounter the need to support several data

structures that are nearly identical but vary in some systematic
ways.

 Difficult to maintain consistency as such structures are extended.
 E.g. real and integer arrays

4/22/08 OOP for Scientists 8

Motivating Example
 Suppose we have an algorithm which involves a system of linear

equations at some intermediate stage:
A x = b

 Initially we create a procedure that looks like:
subroutine matrixSolve(array, rhs, solution)

and declare local variables:
real :: matrix(n,n)
real :: solution(n), rhs(n)

 Later development shows that the same equation must be solved
multiple times for the same rhs. So we use LU decomposition for
performance and have two procedures:
subroutine LUFactor(array, LUfact, pivots)
subroutine LUSolve(LUfact, pivots, rhs, solution)

and local variables:
real :: LUFactorization(n,n)
integer :: pivots(n)

4/22/08 OOP for Scientists 9

Example 1 (cont’d)
 Notice how our algorithm is already exposing aspects

of matrix solving that are irrelevant to the algorithm
 Local variables (pivot, LU factorization)
 Methods: factor, LU backsubstitution
 If we change the linear solver, we will probably have to

change our driver code for the solver.
 In real world cases, the “hardwiring” of the solver might occur

frequently throughout the application.

4/22/08 OOP for Scientists 10

Example 1 (cont’d)
 Now we discover that many (but not all) cases actually involve large

banded matrices, and we want to save space and time for those:
 Local variables

logical :: isBanded
integer :: nUpperBands, nLowerBands
real, allocatable :: bandedMatrix(:,:)
real, allocatable :: bandedFactors(:,:)

 And conditionals:
if (isBanded) then

call bandedLUFactor()
else

call LUFactor()
end if
…
if (isBanded) then

call bandedLUSolve(…)
else

call LUSolve(…)
end if

4/22/08 OOP for Scientists 11

Example
 Variation in our linear solver is starting to significantly

pollute our high-level algorithm
 More local variables

 Many not even used in any given invocation
 Lots of conditionals

 Code bloat
 Extra complexity.

 But wait … it can get worse!

4/22/08 OOP for Scientists 12

Example (cont’d)
 Years later, the size of our matrices has grown

considerably due to increased model resolution/data
 Analysis of our algorithm shows that in many (but not

all) cases, an iterative solution would converge quickly
to sufficient accuracy.
 A variety of preconditioners are available, but we’re not sure

which will work best in practice.
 Further analysis shows that even in some parameter

regimes, many matrix elements are approximately 0.
Optimization is obtained by using a compressed
sparse matrix representation.

4/22/08 OOP for Scientists 13

Example (cont’d)
 Local Variables

logical :: useIteration
logical :: isSparse
real, allocatable :: sparsePreconditioner(:,:)
real, allocatable :: bandedPreconditioner(:,:)
real, allocatable :: sparseMatrix(:)
integer, allocatable :: sparseindex(:)

 Logic:
if (isSparse) then ! Always use iterative

call factorPreconditioner(…)
elseif (isBanded) then

if (useIteration) then
call factorBandPrecond(…)

else
call bandLUFactor(…)

endif
else ! Full matrix

if (useIteration) then
call factorFullPrecond(…)

else
call LUFactor(…)

end if
end if

4/22/08 OOP for Scientists 14

Example 1 (cont’d)
 Now suppose that someone decides to allow for iterative

methods for the solution of the matrices.
 Need to allow for preconditioners
 Need an initial “guess”
 Need to allow for convergence tests
 Need to allow for variations on iterative approach

 All of this would actually be somewhat more messy than I
have indicated here.

 What has happened!? The algorithm we are working with
just needs to solve a system of linear equations!
 If multiple parts of our program need to solve matrices they may

also be subject to the same escalation in complexity.
 Question: Can’t we somehow “hide” the complexity elsewhere in the

software? Exposing only the commonalities at the top level?

4/22/08 OOP for Scientists 15

Example 1 (cont’d)
And now … we need it to work in

parallel on a cluster!

Job security
for life.

4/22/08 OOP for Scientists 16

Other examples
 Air parcel trajectory code

 Needs to support multiple vector fields
 Analytic
 File-based

 Multiple interpolation schemes

 Needs to support multiple integration schemes
 Runge-Kutta (2nd, 4th, 8th order)
 Adams-Bashforth, etc.

 Can we hide details of spherical coordinates from other
layers?

 Parallelization
 Can we write our algorithms such that they appear serial?

4/22/08 OOP for Scientists 17

Other examples
 Multiple Computational Grids

 E.g. for coupled Earth systems we might have
 Lat-Lon (Arakawa A, B, C, D)
 Cubed-Sphere (Arakawa …)
 Icosahedral

 Some subsystems can “work” with any grid, while others are
dependent on specific representations.

 Coupling can require custom interpolations between grids.
 Can we provide a software layer that supports various grid-specific

operations while hiding the details from the layers that don’t really
care which grid is being used?
 Domain-decomposition, halo-fill
 I/O operations

4/22/08 OOP for Scientists 18

What is OOP
 Object oriented programming is a paradigm in which the

fundamental participants are “objects” which embody both state
and behavior.
 A class is a set of properties and related procedures which

access/modify those properties.
 Objects are individual instances of classes.

 State of an objects consists of the values of the class properties.
 Behavior of objects is expressed in terms of methods which are the

class procedures. Methods have privileged access to object state.
 Method invocation may look different than regular procedure calls.

 Within a program, objects interact with each other by sending
messages (i.e. invoking methods)

 A not-so-obvious example of a class is that of Fortran arrays:
 Methods include shape(), size(), transpose(), minval(), etc.

4/22/08 OOP for Scientists 19

Encapsulation
 Encapsulation is the ability to isolate and hide implementation

details within a software subsystem.
 Instead of directly accessing items in a data structure, methods are

invoked to retrieve/modify.
 If implementation details change, access methods are updated and

client code remains unchanged.
 E.g.

 month = date % month ! Assumes “month” field
becomes

 month = getMonth(date) ! Does not assume “month”
 Remember - the big wins are for complex software with many

complex data structures.
 Note: Fortran 90 introduced strong encapsulation capabilities

with public/private access for module entities.

4/22/08 OOP for Scientists 20

Inheritance
 Inheritance is a way to form new classes using classes that have

already been defined.
 Original class is referred to as the base class (or parent class)
 New class is referred to as the child class or subclass
 Intent is to reuse significant portions of base class.

 Child class may add additional fields/components
 Child class may override some methods of the parent class and leave other

behaviors unchanged.
 Inheritance relations always form hierarchical trees.
 Fortran 2003 introduces inheritance (keyword: extends)
 Child class should be usable in any context where the base class

is usable.
 Useful notion: “is-a” relationship categorization:

 E.g. frog is-a kind of amphibian
 Sparse matrix is-a kind of matrix

4/22/08 OOP for Scientists 21

Inheritance Example
Shape

Perimeter()
Area()

Polygon

Square
P=4a
A=a2

Elipse
P=aE(2π,e)

A=πab

Circle
P=2πr
A=πr2

Triangle
P=a+b+c
A=bh/2

4/22/08 OOP for Scientists 22

Inheritance (cont.d)
 Inheritance Pitfall - the real world is not always easily divided into neat

categories:
 Obligatory example: the platypus (an egg-laying mammal)
 Subtle conflicts can ruin an OO design

 Abstract and Concrete classes
 A common scenario in OOP is for multiple variations to exist without

any particular base implementation from which to inherit.
 The solution is to use an abstract class which defines the shared

interfaces but defers the implementation to the subclasses.
 Subclasses are referred to as concrete classes.
 Cannot declare objects of the abstract class; only of concrete

classes.
 Examples:

 Grid - no generic kind of grid just lots of subclasses.
 AtmosphericGCM could be abstract, with concrete implementations

for GEOS5_AGCM and GISS_AGCM. Encourages plug-and-play.

4/22/08 OOP for Scientists 23

Inheritance Example
Shape

Perimeter()
Area()

Polygon

Square
P=4a
A=a2

Elipse
P=aE(2π,e)

A=πab

Circle
P=2πr
A=πr2

Triangle
P=a+b+c
A=bh/2

Abstract
Types

4/22/08 OOP for Scientists 24

Function/procedure pointers
 While not strictly an OO concept, function pointers are

a major part of the implementation of OO abstractions.
 A function pointer is a data type that is able to be associated

with actual functions/procedures. The association is
determined at run-time.

 Data structure with function pointer can be used to invoke
different behavior in different contexts by associating with
different actual functions.

 No analog in Fortran 95 - but introduced in Fortran 2003
 Not simply function dummy arguments - no way to save

4/22/08 OOP for Scientists 25

Polymorphism
 Polymorphism is the capability of treating objects of a subclass

as though they were members of the parent class.
 A polymorphic variable is one whose actual type is not known

at compile time.
 Run-time environment calls the appropriate methods on depending

on actual type (or dynamic type)
 Implemented with dynamic binding (usually function pointers)

 Details of associating with specific type are language dependent
 Polymorphism and inheritance are distinct aspects but are

typically applied together for maximum impact.
 E.g. polymorphic variable myShape of class “Shape” will

compute the compute area/perimeter according to type set at
run time.

 Introduced in Fortran 2003.

4/22/08 OOP for Scientists 26

Advantages of Polymorphism
 Generic programming - high level algorithms are

written in terms of the base class. Do not need to
write variants for each subclass.
 E.g. an algorithm working with linear equations can be written

in terms of methods for generic matrices, while the specific
operations (factor(), solve()) are implemented differently for
the subclasses (Dense, Sparse, Banded)

 Allows customization without violating encapsulation.
 Extension does not require access to source of the base-

class.
 Rare case where one can eat-the-cake and have-it-too.

4/22/08 OOP for Scientists 27

Aside on Overloading
 AKA ad-hoc polymorphism
 Ability to use the same name for multiple procedures.

 Actual procedure used is determined by type of arguments.
 Not based upon any type hierarchy

 No reuse is possible - each type must have a full
implementation of the overloaded procedure.

 Introduced in Fortran 90 with interface blocks

4/22/08 OOP for Scientists 28

Templates
 AKA Parametric Polymorphism
 Some languages support the ability to declare multiple

similar classes simultaneously.
 Routines using the type then specify which case to use
 Distinct from first notion of polymorphism

 Can have performance advantages - static binding
 Not generally as flexible

 Fortran 2003 introduces a limited form
 Derived types can be parameterized for “kinds” and sizes.
 Cannot parameterize integers and reals simultaneously.

4/22/08 OOP for Scientists 29

Example 1 revisited
 Using OOP terminology we can now sketch out a design which is more

modular.
 First, we want to support different internal representations of matrices,

and introduce an abstract class: Matrix
 Subclass DenseMatrix would use conventional array storage
 Subclass SparseMatrix would contain

 BandedMatrix
 BlockDiagonalMatrix
 CompressedSparseMatrix

 Fundamental methods could be
 Get matrix element I,J
 Matrix-vector multiplication - needed for iterative solvers
 Row operations (rowi = rowi + x * rowj) needed by direct solvers
 Perhaps use stubs for combinations we don’t want to support. (E.g.

probably don’t need direct solve on CompressedSparseMatrix)

4/22/08 OOP for Scientists 30

Matrix Class Hierarchy

Matrix

Dense
Matrix

Sparse
Matrix

Band
Diagonal

Matrix

Block
Diagonal

Matrix

Compressed
Sparse
Matrix

4/22/08 OOP for Scientists 31

Example 1 revisited
 For the solver hierarchy we have the class: MatrixSolver

 Abstract since we will have different representations of the
underlying matrix and no default representation:

 Primary methods are preprocess() and solve()
 preprocess() would do any initial calculations such as factorization

that would be used for multiple solve() operations.
 solve() would accept a rhs and return a solution

 Note that the hierarchy should make no assumption about
underlying implementation of matrices.
 Just rely on methods from the Matrix base class.
 In practice we may violate this somewhat for performance reasons,

esp. in the case of the direct solver. Modest retreat in struggle
against complexity.

4/22/08 OOP for Scientists 32

Example 1 cont’d
 Subclasses:

 DirectMatrixSolver
 LU_MatrixSolver
 QR_MatrixSolver

 IterativeMatrixSolver
 PCG
 GMRES
 Iterative solvers would optionally accept a preconditioner and a

tolerance.
 Preconditioner could itself be a MatrixSolver object!

4/22/08 OOP for Scientists 33

Linear Solver Hierarchy
Linear
Solver

Direct
Solver

Iterative
Solver

PCG GMRESLU
Decomp

QR
Decomp

4/22/08 OOP for Scientists 34

High Level
Algorithm

Using the linear solver

aMatrix

aSolver

Algorithm “has-a” MatrixSolver initialized with a Matrix
object. Subtypes of each are not directly known.
Matrix and MatrixSolver classes collaborate.

4/22/08 OOP for Scientists 35

OOP and Model Infrastructure
 The clearest case for OOP in scientific models is in the

“infrastructure” which manages the various model abstractions.
 Infrastructure includes

 I/O
 Computational grid
 Loop constructs
 Domain decomposition
 Calendars/clocks

 Common infrastructure issues among various Earth system models
led to the creation of the ESMF. While not truly OO, ESMF is
strongly encapsulated and has an object based look-and-feel.
 With the availability of OOP, some aspects of ESMF become trivial,

and others could be extended to be far more powerful.

4/22/08 OOP for Scientists 36

OOP and Numerics
 As seen in the earlier example, OOP can be a useful

approach for some numerical issues. When multiple
data representations are possible and require different
(but comparable) algorithmic treatments,
inheritance/polymorphism become very important.

4/22/08 OOP for Scientists 37

Parameterized physics?
 Even when the the detailed implementation of a

parameterized model is not based upon objects, it
might make sense to consider the model to be a
concrete implementation of some abstract model.
 A strong step towards enabling plug-and-play with other

implementations
 Encourages user extensions/enhancements and eases the

reintegration of such changes into the original model.

4/22/08 OOP for Scientists 38

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

4/22/08 OOP for Scientists 39

Next Fortran 2003 Session
 Inheritance in Fortran 2003
 Tom Clune will present
 Tuesday, May 06, 2008
 B28-E210 @ 12:00 noon

